
Object Oriented Programming
for Scientists

Tom Clune
SIVO Fortran 2003 Series

April 22, 2008

4/22/08 OOP for Scientists 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.

4/22/08 OOP for Scientists 3

Outline
 Weaknesses of structured programming
 Detailed motivating example
 Basic concepts of OOP
 Applying OOP to motivating example
 Extents of applicability

4/22/08 OOP for Scientists 4

Caveats
 OOP is a major paradigm shift which generally takes

years to fully absorb.
 This talk is meant to motivate the rationale for using

OOP in some circumstances within scientific models.
 This talk is not meant as a substitute for actual

training/experience.
 Lots of excellent sources on the web.
 Most examples are motivated by computer science

considerations and may therefore be unconvincing for typical
physical scientists.

4/22/08 OOP for Scientists 5

(Narrow) History of OOP
 OOP grew out of perceived weaknesses/difficulties of structured

programming:
 Structured programs consisted of (global) data structures and disjoint

procedures for accessing/modifying the data structures.
 Difficulties arise especially for large systems composed in this manner.

 Weakness 1: Lack of support for encapsulation
 Modifications are difficult/expensive

 Explicit references to data structure components forces frequent and
pervasive changes on implementation as the data structure evolves over
time.

 Example: “Y2K” bug. Representation was explicit throughout the code.
 Developers need to be expert in all parts of the application.
 Limited modularity

 DRY principle: Don’t Repeat Yourself

4/22/08 OOP for Scientists 6

History (cont’d)
 Weakness 2: Lack of support for extension/inheritance

 Isolated use cases that require different logic cannot be directly
supported. Workarounds are tedious at best and tend to bloat logic
and data structures.

 Weakness 2b: Centralized development constraint
 If an external developer creates a useful extension, she must push

the extension back to the original developers in order to be of use to
other users.

 Common problem for developers of infrastructure layers.
 E.g. if I create a new type of grid for ESMF, I cannot share the

extension with other users in any simple manner. Instead, ESMF
core development would need to incorporate the extension in later
releases.

4/22/08 OOP for Scientists 7

History of OOP (cont’d)
 Weakness 3: Lack of support for polymorphism

 Sometimes referred to as dynamic dispatch
 Common scenarios involve multiple implementations of the same

functionality. Support for variations leads to pervasive nested
conditionals which increase complexity and errors.

 Examples:
 Support for multiple coordinate systems or grids
 Support for multiple nonlinear solvers

 Weakness 4: Lack of support for templates
 Developers often encounter the need to support several data

structures that are nearly identical but vary in some systematic
ways.

 Difficult to maintain consistency as such structures are extended.
 E.g. real and integer arrays

4/22/08 OOP for Scientists 8

Motivating Example
 Suppose we have an algorithm which involves a system of linear

equations at some intermediate stage:
A x = b

 Initially we create a procedure that looks like:
subroutine matrixSolve(array, rhs, solution)

and declare local variables:
real :: matrix(n,n)
real :: solution(n), rhs(n)

 Later development shows that the same equation must be solved
multiple times for the same rhs. So we use LU decomposition for
performance and have two procedures:
subroutine LUFactor(array, LUfact, pivots)
subroutine LUSolve(LUfact, pivots, rhs, solution)

and local variables:
real :: LUFactorization(n,n)
integer :: pivots(n)

4/22/08 OOP for Scientists 9

Example 1 (cont’d)
 Notice how our algorithm is already exposing aspects

of matrix solving that are irrelevant to the algorithm
 Local variables (pivot, LU factorization)
 Methods: factor, LU backsubstitution
 If we change the linear solver, we will probably have to

change our driver code for the solver.
 In real world cases, the “hardwiring” of the solver might occur

frequently throughout the application.

4/22/08 OOP for Scientists 10

Example 1 (cont’d)
 Now we discover that many (but not all) cases actually involve large

banded matrices, and we want to save space and time for those:
 Local variables

logical :: isBanded
integer :: nUpperBands, nLowerBands
real, allocatable :: bandedMatrix(:,:)
real, allocatable :: bandedFactors(:,:)

 And conditionals:
if (isBanded) then

call bandedLUFactor()
else

call LUFactor()
end if
…
if (isBanded) then

call bandedLUSolve(…)
else

call LUSolve(…)
end if

4/22/08 OOP for Scientists 11

Example
 Variation in our linear solver is starting to significantly

pollute our high-level algorithm
 More local variables

 Many not even used in any given invocation
 Lots of conditionals

 Code bloat
 Extra complexity.

 But wait … it can get worse!

4/22/08 OOP for Scientists 12

Example (cont’d)
 Years later, the size of our matrices has grown

considerably due to increased model resolution/data
 Analysis of our algorithm shows that in many (but not

all) cases, an iterative solution would converge quickly
to sufficient accuracy.
 A variety of preconditioners are available, but we’re not sure

which will work best in practice.
 Further analysis shows that even in some parameter

regimes, many matrix elements are approximately 0.
Optimization is obtained by using a compressed
sparse matrix representation.

4/22/08 OOP for Scientists 13

Example (cont’d)
 Local Variables

logical :: useIteration
logical :: isSparse
real, allocatable :: sparsePreconditioner(:,:)
real, allocatable :: bandedPreconditioner(:,:)
real, allocatable :: sparseMatrix(:)
integer, allocatable :: sparseindex(:)

 Logic:
if (isSparse) then ! Always use iterative

call factorPreconditioner(…)
elseif (isBanded) then

if (useIteration) then
call factorBandPrecond(…)

else
call bandLUFactor(…)

endif
else ! Full matrix

if (useIteration) then
call factorFullPrecond(…)

else
call LUFactor(…)

end if
end if

4/22/08 OOP for Scientists 14

Example 1 (cont’d)
 Now suppose that someone decides to allow for iterative

methods for the solution of the matrices.
 Need to allow for preconditioners
 Need an initial “guess”
 Need to allow for convergence tests
 Need to allow for variations on iterative approach

 All of this would actually be somewhat more messy than I
have indicated here.

 What has happened!? The algorithm we are working with
just needs to solve a system of linear equations!
 If multiple parts of our program need to solve matrices they may

also be subject to the same escalation in complexity.
 Question: Can’t we somehow “hide” the complexity elsewhere in the

software? Exposing only the commonalities at the top level?

4/22/08 OOP for Scientists 15

Example 1 (cont’d)
And now … we need it to work in

parallel on a cluster!

Job security
for life.

4/22/08 OOP for Scientists 16

Other examples
 Air parcel trajectory code

 Needs to support multiple vector fields
 Analytic
 File-based

 Multiple interpolation schemes

 Needs to support multiple integration schemes
 Runge-Kutta (2nd, 4th, 8th order)
 Adams-Bashforth, etc.

 Can we hide details of spherical coordinates from other
layers?

 Parallelization
 Can we write our algorithms such that they appear serial?

4/22/08 OOP for Scientists 17

Other examples
 Multiple Computational Grids

 E.g. for coupled Earth systems we might have
 Lat-Lon (Arakawa A, B, C, D)
 Cubed-Sphere (Arakawa …)
 Icosahedral

 Some subsystems can “work” with any grid, while others are
dependent on specific representations.

 Coupling can require custom interpolations between grids.
 Can we provide a software layer that supports various grid-specific

operations while hiding the details from the layers that don’t really
care which grid is being used?
 Domain-decomposition, halo-fill
 I/O operations

4/22/08 OOP for Scientists 18

What is OOP
 Object oriented programming is a paradigm in which the

fundamental participants are “objects” which embody both state
and behavior.
 A class is a set of properties and related procedures which

access/modify those properties.
 Objects are individual instances of classes.

 State of an objects consists of the values of the class properties.
 Behavior of objects is expressed in terms of methods which are the

class procedures. Methods have privileged access to object state.
 Method invocation may look different than regular procedure calls.

 Within a program, objects interact with each other by sending
messages (i.e. invoking methods)

 A not-so-obvious example of a class is that of Fortran arrays:
 Methods include shape(), size(), transpose(), minval(), etc.

4/22/08 OOP for Scientists 19

Encapsulation
 Encapsulation is the ability to isolate and hide implementation

details within a software subsystem.
 Instead of directly accessing items in a data structure, methods are

invoked to retrieve/modify.
 If implementation details change, access methods are updated and

client code remains unchanged.
 E.g.

 month = date % month ! Assumes “month” field
becomes

 month = getMonth(date) ! Does not assume “month”
 Remember - the big wins are for complex software with many

complex data structures.
 Note: Fortran 90 introduced strong encapsulation capabilities

with public/private access for module entities.

4/22/08 OOP for Scientists 20

Inheritance
 Inheritance is a way to form new classes using classes that have

already been defined.
 Original class is referred to as the base class (or parent class)
 New class is referred to as the child class or subclass
 Intent is to reuse significant portions of base class.

 Child class may add additional fields/components
 Child class may override some methods of the parent class and leave other

behaviors unchanged.
 Inheritance relations always form hierarchical trees.
 Fortran 2003 introduces inheritance (keyword: extends)
 Child class should be usable in any context where the base class

is usable.
 Useful notion: “is-a” relationship categorization:

 E.g. frog is-a kind of amphibian
 Sparse matrix is-a kind of matrix

4/22/08 OOP for Scientists 21

Inheritance Example
Shape

Perimeter()
Area()

Polygon

Square
P=4a
A=a2

Elipse
P=aE(2π,e)

A=πab

Circle
P=2πr
A=πr2

Triangle
P=a+b+c
A=bh/2

4/22/08 OOP for Scientists 22

Inheritance (cont.d)
 Inheritance Pitfall - the real world is not always easily divided into neat

categories:
 Obligatory example: the platypus (an egg-laying mammal)
 Subtle conflicts can ruin an OO design

 Abstract and Concrete classes
 A common scenario in OOP is for multiple variations to exist without

any particular base implementation from which to inherit.
 The solution is to use an abstract class which defines the shared

interfaces but defers the implementation to the subclasses.
 Subclasses are referred to as concrete classes.
 Cannot declare objects of the abstract class; only of concrete

classes.
 Examples:

 Grid - no generic kind of grid just lots of subclasses.
 AtmosphericGCM could be abstract, with concrete implementations

for GEOS5_AGCM and GISS_AGCM. Encourages plug-and-play.

4/22/08 OOP for Scientists 23

Inheritance Example
Shape

Perimeter()
Area()

Polygon

Square
P=4a
A=a2

Elipse
P=aE(2π,e)

A=πab

Circle
P=2πr
A=πr2

Triangle
P=a+b+c
A=bh/2

Abstract
Types

4/22/08 OOP for Scientists 24

Function/procedure pointers
 While not strictly an OO concept, function pointers are

a major part of the implementation of OO abstractions.
 A function pointer is a data type that is able to be associated

with actual functions/procedures. The association is
determined at run-time.

 Data structure with function pointer can be used to invoke
different behavior in different contexts by associating with
different actual functions.

 No analog in Fortran 95 - but introduced in Fortran 2003
 Not simply function dummy arguments - no way to save

4/22/08 OOP for Scientists 25

Polymorphism
 Polymorphism is the capability of treating objects of a subclass

as though they were members of the parent class.
 A polymorphic variable is one whose actual type is not known

at compile time.
 Run-time environment calls the appropriate methods on depending

on actual type (or dynamic type)
 Implemented with dynamic binding (usually function pointers)

 Details of associating with specific type are language dependent
 Polymorphism and inheritance are distinct aspects but are

typically applied together for maximum impact.
 E.g. polymorphic variable myShape of class “Shape” will

compute the compute area/perimeter according to type set at
run time.

 Introduced in Fortran 2003.

4/22/08 OOP for Scientists 26

Advantages of Polymorphism
 Generic programming - high level algorithms are

written in terms of the base class. Do not need to
write variants for each subclass.
 E.g. an algorithm working with linear equations can be written

in terms of methods for generic matrices, while the specific
operations (factor(), solve()) are implemented differently for
the subclasses (Dense, Sparse, Banded)

 Allows customization without violating encapsulation.
 Extension does not require access to source of the base-

class.
 Rare case where one can eat-the-cake and have-it-too.

4/22/08 OOP for Scientists 27

Aside on Overloading
 AKA ad-hoc polymorphism
 Ability to use the same name for multiple procedures.

 Actual procedure used is determined by type of arguments.
 Not based upon any type hierarchy

 No reuse is possible - each type must have a full
implementation of the overloaded procedure.

 Introduced in Fortran 90 with interface blocks

4/22/08 OOP for Scientists 28

Templates
 AKA Parametric Polymorphism
 Some languages support the ability to declare multiple

similar classes simultaneously.
 Routines using the type then specify which case to use
 Distinct from first notion of polymorphism

 Can have performance advantages - static binding
 Not generally as flexible

 Fortran 2003 introduces a limited form
 Derived types can be parameterized for “kinds” and sizes.
 Cannot parameterize integers and reals simultaneously.

4/22/08 OOP for Scientists 29

Example 1 revisited
 Using OOP terminology we can now sketch out a design which is more

modular.
 First, we want to support different internal representations of matrices,

and introduce an abstract class: Matrix
 Subclass DenseMatrix would use conventional array storage
 Subclass SparseMatrix would contain

 BandedMatrix
 BlockDiagonalMatrix
 CompressedSparseMatrix

 Fundamental methods could be
 Get matrix element I,J
 Matrix-vector multiplication - needed for iterative solvers
 Row operations (rowi = rowi + x * rowj) needed by direct solvers
 Perhaps use stubs for combinations we don’t want to support. (E.g.

probably don’t need direct solve on CompressedSparseMatrix)

4/22/08 OOP for Scientists 30

Matrix Class Hierarchy

Matrix

Dense
Matrix

Sparse
Matrix

Band
Diagonal

Matrix

Block
Diagonal

Matrix

Compressed
Sparse
Matrix

4/22/08 OOP for Scientists 31

Example 1 revisited
 For the solver hierarchy we have the class: MatrixSolver

 Abstract since we will have different representations of the
underlying matrix and no default representation:

 Primary methods are preprocess() and solve()
 preprocess() would do any initial calculations such as factorization

that would be used for multiple solve() operations.
 solve() would accept a rhs and return a solution

 Note that the hierarchy should make no assumption about
underlying implementation of matrices.
 Just rely on methods from the Matrix base class.
 In practice we may violate this somewhat for performance reasons,

esp. in the case of the direct solver. Modest retreat in struggle
against complexity.

4/22/08 OOP for Scientists 32

Example 1 cont’d
 Subclasses:

 DirectMatrixSolver
 LU_MatrixSolver
 QR_MatrixSolver

 IterativeMatrixSolver
 PCG
 GMRES
 Iterative solvers would optionally accept a preconditioner and a

tolerance.
 Preconditioner could itself be a MatrixSolver object!

4/22/08 OOP for Scientists 33

Linear Solver Hierarchy
Linear
Solver

Direct
Solver

Iterative
Solver

PCG GMRESLU
Decomp

QR
Decomp

4/22/08 OOP for Scientists 34

High Level
Algorithm

Using the linear solver

aMatrix

aSolver

Algorithm “has-a” MatrixSolver initialized with a Matrix
object. Subtypes of each are not directly known.
Matrix and MatrixSolver classes collaborate.

4/22/08 OOP for Scientists 35

OOP and Model Infrastructure
 The clearest case for OOP in scientific models is in the

“infrastructure” which manages the various model abstractions.
 Infrastructure includes

 I/O
 Computational grid
 Loop constructs
 Domain decomposition
 Calendars/clocks

 Common infrastructure issues among various Earth system models
led to the creation of the ESMF. While not truly OO, ESMF is
strongly encapsulated and has an object based look-and-feel.
 With the availability of OOP, some aspects of ESMF become trivial,

and others could be extended to be far more powerful.

4/22/08 OOP for Scientists 36

OOP and Numerics
 As seen in the earlier example, OOP can be a useful

approach for some numerical issues. When multiple
data representations are possible and require different
(but comparable) algorithmic treatments,
inheritance/polymorphism become very important.

4/22/08 OOP for Scientists 37

Parameterized physics?
 Even when the the detailed implementation of a

parameterized model is not based upon objects, it
might make sense to consider the model to be a
concrete implementation of some abstract model.
 A strong step towards enabling plug-and-play with other

implementations
 Encourages user extensions/enhancements and eases the

reintegration of such changes into the original model.

4/22/08 OOP for Scientists 38

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Mailing list
 http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

4/22/08 OOP for Scientists 39

Next Fortran 2003 Session
 Inheritance in Fortran 2003
 Tom Clune will present
 Tuesday, May 06, 2008
 B28-E210 @ 12:00 noon

